
2024-08-29T04:29:06
Electrodes are an essential part of any battery. The first electrochemical battery was devised by Alessandro Volta and was aptly named the Voltaic cell.[2] This battery consisted of a stack of copper and zinc electrodes separated by brine-soaked paper disks. Due to fluctuation in the voltage provided by the voltaic cell, it was not very practical. The first practical battery was invented in 1839 and named the Daniell cell after John Frederic Daniell. It still made use of the zinc–copper electrode combination. Since then, many more batteries have been developed using various materials. The basis of all these is still using two electrodes, anodes and cathodes. Anode (-) 'Anode' was coined by William Whewell at Michael Faraday's request, derived from the Greek words ἄνο (ano), 'upwards' and ὁδός (hodós), 'a way'.[3] The anode is the electrode through which the conventional current enters from the electrical circuit of an electrochemical cell (battery) into the non-metallic cell. The electrons then flow to the other side of the battery. Benjamin Franklin surmised that the electrical flow moved from positive to negative.[4] The electrons flow away from the anode and the conventional current towards it. From both can be concluded that the charge of the anode is negative. The electron entering the anode comes from the oxidation reaction that takes place next to it. Cathode (+) The cathode is in many ways the opposite of the anode. The name (also coined by Whewell) comes from the Greek words κάτω (kato), 'downwards' and ὁδός (hodós), 'a way'. It is the positive electrode, meaning the electrons flow from the electrical circuit through the cathode into the non-metallic part of the electrochemical cell. At the cathode, the reduction reaction takes place with the electrons arriving from the wire connected to the cathode and are absorbed by the oxidizing agent.
Have a question? Ask here!
Required fields are marked *